How to Deploy a Meme Token on Juneo Supernet Using Remix: A Complete Guide

Crypto Immortal
13 min readJul 29, 2024

--

Meme Token on Juneo Supernet

Deploying a Meme token on the Juneo Supernet using Remix is a straightforward process, especially if you’re familiar with Ethereum-based development. Juneo Supernet, leveraging Avalanche’s architecture, provides a robust and scalable platform for deploying decentralized applications and tokens. This guide will take you through the steps to deploy your Meme token on the Juneo Supernet.

For the sake of this tutorial we will deploy your very own Pepe Token.

Prerequisites

Before starting, ensure you have the following:

  1. MetaMask: A crypto wallet and gateway to blockchain apps.
  2. Some JUNE Tokens: You’ll need JUNE tokens in your MetaMask wallet to cover gas fees.
  3. Remix IDE: An online Ethereum IDE for writing, compiling, and deploying smart contracts.

Step 1: Set Up MetaMask for Juneo Supernet

You can follow this guide to connect your wallet to Juneo Supernet: https://xdropcrypto.medium.com/how-to-add-juneo-supernet-network-to-metamask-step-by-step-guide-d943a5e79024

Step 2: Access Remix IDE

  1. Open Remix: Visit Remix IDE.
  2. Create a New File: In the File Explorer section, create a new file named PepeToken.sol.

Step 3: Write the Pepe Token Smart Contract

You can find Pepe Token original smart contract on the ethereum network HERE

Copy and paste code below to PepeToken.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.0 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}

function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}


// File @openzeppelin/contracts/access/Ownable.sol@v4.4.0


// OpenZeppelin Contracts v4.4.0 (access/Ownable.sol)

pragma solidity ^0.8.0;

/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;

event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}

/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}

/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}

/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}

/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}

/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}


// File @openzeppelin/contracts/token/ERC20/IERC20.sol@v4.4.0


// OpenZeppelin Contracts v4.4.0 (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);

/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);

/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);

/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);

/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);

/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);

/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);

/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}


// File @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol@v4.4.0


// OpenZeppelin Contracts v4.4.0 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);

/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);

/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}


// File @openzeppelin/contracts/token/ERC20/ERC20.sol@v4.4.0


// OpenZeppelin Contracts v4.4.0 (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;



/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;

mapping(address => mapping(address => uint256)) private _allowances;

uint256 private _totalSupply;

string private _name;
string private _symbol;

/**
* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}

/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}

/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}

/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}

/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}

/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}

/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}

/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}

/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}

/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) public virtual override returns (bool) {
_transfer(sender, recipient, amount);

uint256 currentAllowance = _allowances[sender][_msgSender()];
require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
unchecked {
_approve(sender, _msgSender(), currentAllowance - amount);
}

return true;
}

/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
return true;
}

/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
uint256 currentAllowance = _allowances[_msgSender()][spender];
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(_msgSender(), spender, currentAllowance - subtractedValue);
}

return true;
}

/**
* @dev Moves `amount` of tokens from `sender` to `recipient`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(
address sender,
address recipient,
uint256 amount
) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");

_beforeTokenTransfer(sender, recipient, amount);

uint256 senderBalance = _balances[sender];
require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[sender] = senderBalance - amount;
}
_balances[recipient] += amount;

emit Transfer(sender, recipient, amount);

_afterTokenTransfer(sender, recipient, amount);
}

/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");

_beforeTokenTransfer(address(0), account, amount);

_totalSupply += amount;
_balances[account] += amount;
emit Transfer(address(0), account, amount);

_afterTokenTransfer(address(0), account, amount);
}

/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");

_beforeTokenTransfer(account, address(0), amount);

uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
}
_totalSupply -= amount;

emit Transfer(account, address(0), amount);

_afterTokenTransfer(account, address(0), amount);
}

/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");

_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}

/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}

/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}


// File contracts/PepeToken.sol



pragma solidity ^0.8.0;


contract PepeToken is Ownable, ERC20 {
bool public limited;
uint256 public maxHoldingAmount;
uint256 public minHoldingAmount;
address public uniswapV2Pair;
mapping(address => bool) public blacklists;

constructor(uint256 _totalSupply) ERC20("Pepe", "PEPE") {
_mint(msg.sender, _totalSupply);
}

function blacklist(address _address, bool _isBlacklisting) external onlyOwner {
blacklists[_address] = _isBlacklisting;
}

function setRule(bool _limited, address _uniswapV2Pair, uint256 _maxHoldingAmount, uint256 _minHoldingAmount) external onlyOwner {
limited = _limited;
uniswapV2Pair = _uniswapV2Pair;
maxHoldingAmount = _maxHoldingAmount;
minHoldingAmount = _minHoldingAmount;
}

function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) override internal virtual {
require(!blacklists[to] && !blacklists[from], "Blacklisted");

if (uniswapV2Pair == address(0)) {
require(from == owner() || to == owner(), "trading is not started");
return;
}

if (limited && from == uniswapV2Pair) {
require(super.balanceOf(to) + amount <= maxHoldingAmount && super.balanceOf(to) + amount >= minHoldingAmount, "Forbid");
}
}

function burn(uint256 value) external {
_burn(msg.sender, value);
}
}

Step 4: Compile the Smart Contract

  1. Switch to the Solidity Compiler: Click on the Solidity icon in Remix.
  2. Select Compiler Version: Choose version 0.8.0 or compatible.
  3. Expand advanced configuration and tick enable optimization with the value of 200
  4. Compile the Contract: Click “Compile PepeToken.sol”. Ensure there are no errors in the code.

Step 5: Deploy the Contract on Juneo Supernet

  1. Switch to the Deploy & Run Transactions Tab: Click on the Ethereum logo in Remix.
  2. Environment: Choose “Injected Web3” to connect Remix with MetaMask.
  3. Deploy the Contract:
  • In the “Contract” dropdown, select PepeToken - PepeToken.sol.
  • Enter the initial supply (e.g., 1000000000000000000000000000 for one billion tokens) in the "Deploy" input field.

You can use any number you want, just don’t forget to add 18 zero since the value used is in wei.

1000000000000000000000000000 = 1,000,000,000,000 Token

  • Click “Deploy” and confirm the transaction in MetaMask with JUNE as the gas fee.

Step 6: Verify and Interact with Your Token

  1. Check the Transaction: After the transaction is confirmed, your PepeToken will be live on the Juneo Supernet.
  2. View in MetaMask: Add your token to MetaMask using the contract address from the transaction receipt.
  3. Interact with Your Token: Use Remix or MetaMask to transfer tokens, check balances, and more.

Step 7: Further Customization and Mainnet Deployment

For a more advanced token, consider adding features like minting, burning, or governance functionalities. If you’re satisfied with your token and ready to launch on the mainnet, switch MetaMask to the mainnet and follow the same deployment steps.

Conclusion

You’ve successfully deployed a Pepe-themed token on the Juneo Supernet! This guide provides a foundation for your blockchain journey, allowing you to explore more advanced features and applications. Remember to test thoroughly and consider security audits for your contracts, especially if they handle significant value or will be used by a large number of users.

Happy coding, and welcome to the Juneo Supernet community!

--

--

No responses yet